
Rigorous enclosure
of round-off errors in
floating-point computations

NSV 2020

Rémy Garcia Claude Michel Michel Rueher

Université Côte d’Azur, CNRS, I3S, France

July 20, 2020

Outline

Motivation

Floating-point numbers

A constraint system to bound round-off errors

Rigorous enclosure of round-off errors

Experimentation

Conclusion

Motivation

Motivation 1/22

Program on F written with the semantic of R
F ‰ R
Computation over F produce errors

Error analysis tools (Fluctuat, FPTaylor, PRECiSA, . . .)
compute an over-approximation of the error
Ñ Computed bounds of error are rarely reachable

Other tools (S3FP, FPSDP, . . .) compute an
under-approximation of the largest absolute error
Ñ Possible over-approximation of bounds

None of these tools provides an enclosure of the largest
absolute error

Motivating example

Motivation 2/22

Consider the following program that compute z and use a
conditional to raise an alarm or proceed without it

z = (3∗ x+y)/w;

i f (z − 10 <= δ) {
p roceed () ;

} e l s e {
r a i s e A l a r m () ;

}

Critical issue

Is the error on z small enough to avoid raising the alarm
when the value of z is less than or equal to 10 on R?

Motivating example (cont.)

Motivation 3/22

Computation is done over 64-bit floating-point numbers with
x P r7, 9s, y P r3, 5s, w P r2, 4s, and δ set to 5.32e´15

FPTaylor PRECiSA Fluctuat FErA
ez 5.15e-15 5.08e-15 6.28e-15 4.96e-15

Bounds are smaller than δ Ñ no alarm for z ď 10

FErA output an enclosure of r3.55e´15, 4.96e´15s for ez with

x “ 8.99999999999996624922 ex “ ´8.88178419700125232339e´16
y “ 4.99999999999994848565 ey “ ´4.44089209850062616169e´16
w “ 3.19999999999998419042 ew “ `2.22044604925031308085e´16
z “ 10.0000000000000035527 ez “ ´3.55271367880050092936e´15

Motivating example (cont.)

Motivation 4/22

Let us change δ to 3.55e´15

FErA provides one case where the else branch is taken and
input values exercising it

x “ 8.99999999999996624922 ex “ ´8.88178419700125232339e´16
y “ 4.99999999999994848565 ey “ ´4.44089209850062616169e´16
w “ 3.19999999999998419042 ew “ `2.22044604925031308085e´16
z “ 10.0000000000000035527 ez “ ´3.55271367880050092936e´15

Fluctuat, FPTaylor, and PRECiSA are unable to do so, as they
only compute an over-approximation of errors

Floats – definition

Floating-point numbers 5/22

F is a finite subset of R

0´8 `8

R (horizontal line) and F (vertical lines)

IEEE 754 floats are represented by
a sign
a mantissa
an exponent

p´1q
s

ˆ 1.m ˆ 2e

p´1q
0

ˆ 1.00010001101011010..0 ˆ 2´1 « 0.53452301025390625

Floats – rounding

Floating-point numbers 6/22

Problem: x, y P F Ñ x ¨ y R F, where ¨ is an operation on R

Require rounding ˝ of the result to the closest float
Loss of precision ˝pxq usually not equal to x
Root of the divergence between R and F
˝p0.1q “ 0.100000001490116119384765625

Rounding accumulation
Rounding on all operations ˝p˝px ¨ yq ¨ zq

Increase the divergence between R and F
Reduce or cancel an error with error compensation

˝p˝p0.1 ` 0.2q`0.2q “ 0.5

e “ ´e « 7.4505805969238281e´09

Constraint Programming: overview

A constraint system to bound round-off errors 7/22

Constraint Programming (CP) is a paradigm used for solving
NP-complete combinatorial problems

Explicit separation between
modelling, which is a formalisation of the problem,
and solving, that uses dedicated techniques to find a
solution

How does CP works?

A constraint system to bound round-off errors 8/22

Modelling
A CSP pX , D, Cq is defined by:

X is the set of variables
D is the set of domains

§ A domain is the set of all possible values for each x P X
C is the set of constraints

§ A constraint is a relation between variables
Solving

Filtering, removes trivially inconsistant values from
domains of variables in a constraint

§ Propagate to other constraints with common variables
Search, selects a variable and splits its domain,
according to a search strategy

Ñ The solving process is repeated until a solution is
found or when the search space is fully explored

Domain of errors overQQQ

A constraint system to bound round-off errors 9/22

Let x be a floating-point variable of a CSP

Domain of values Dx

Interval of F
Cannot represent
the associated error
(R F)

Domain of errors Dex

Interval of Q
Correctly
represents an error

For `, ´, ˆ, ˜

x

Dx Dex

Filtering – error computation

A constraint system to bound round-off errors 10/22

Compute errors over Q
Exact computation of errors

e “ pxR ¨ yRq ´ pxF d yFq

with ¨ an operation over R and d an operation over F
(operations are restricted to `, ´, ˆ, ˜)

Signed errors
Possible compensation of errors

Filtering – domains of variables

A constraint system to bound round-off errors 11/22

Domain of values Dx

Projection functions from
[Michel02],[BotellaGM06],
and [MarreM10]

Domain of errors Dex

Projection functions based
on pxR ¨ yRq ´ pxF d yFq

Error filtering on which constraints?
Arithmetic constraints: `, ´, ˆ, ˜

Assignement constraint: propagation of the error
Example for z “ x ´ y

ez Ð ez X pex ´ ey ` eaq

ex Ð ex X pez ` ey ´ eaq

ey Ð ey X pex ´ ez ` eaq

ea Ð ea X pez ´ ex ` eyq

Filtering – operation error

A constraint system to bound round-off errors 12/22

Consider z “ x d y

IEEE 754, operations correctly rounded: ‘, a, b, m

px d yq ´
1
2

ulppx d yq ď x ¨ y ď px d yq `
1
2

ulppx d yq

ulp: distance between two consecutive floats

Error on the operation

´
1
2

ulppx d yq ď ed ď `
1
2

ulppx d yq

Constraint over errors

A constraint system to bound round-off errors 13/22

New notation for constraints over errors

errpxq ě ϵ

errpxq represent the domain of errors of variable x
errpxq P Q, the constraint is over QQQ

Modelize a program as an optimization problem

max | errpxq |

Branch-and-bound – schema

Rigorous enclosure of round-off errors 14/22

Computes two bounds of errors:
Dual: upper bound of error, ē (filtering)

§ over-approximation
Primal: lower bound of error, e˚ (generate-and-test)

§ reachable Ñ provides input values

Error maximization directed by search on values
explore finite search space in F Ñ infer error

A maximal error is in general hard to find

Anytime algorithm Ñ provides input values, e˚, and ē

Stopping criteria

Rigorous enclosure of round-off errors 15/22

Operation error: ed and z result of operation

ed ď
1
2

ulppzq

Ñ highly dependent on the distribution of floats

Consider interval p2n, 2n`1q

Distance between two floats is the same
All floats have the same ulp

Ñ cannot improve ed by means of projection functions

Once results for all operations satisfy this criteria, stop the
exploration of this part of the search space

Branch-and-bound – boxes

Rigorous enclosure of round-off errors 16/22

A box B can be in one of the following three states:

unexplored

discarded, s.t. eB ď e˚

sidelined, s.t. stopping criteria is true
eS is max eB of sidelined boxes

Bounding – dual computation

Rigorous enclosure of round-off errors 17/22

Computation based on constraint programming filtering
projection functions

ez Ð ez X pex ´ ey ` eaq

ex Ð ex X pez ` ey ´ eaq

ey Ð ey X pex ´ ez ` eaq

ea Ð ea X pez ´ ex ` eyq

For a box B

Propagate constraints to filter domains
Update e with max between:

e of unexplored boxes
eS of sidelined boxes

Bounding – primal computation

Rigorous enclosure of round-off errors 18/22

Generate-and-test: random instantiation of input variables

For each box B repeat n times
Randomly instantiate input variables with respect to
domains of values
Compute fQpq ´ fFpq

Local search (m steps):
explore floats around input values

§ guided by the best local value of the error
Compute fQpq ´ fFpq

Ñ Update e˚ with best computed error

Branching – explore boxes

Rigorous enclosure of round-off errors 19/22

Variable selection
Choose in round-robin order a variable x that is not a
singleton

Domain splitting
Apply a bisection on the domain of values of x to
generate two subboxes

Box selection
Use best-first search to select a box B with the greatest
upper bound of error

Experimentation – FPBench

Experimentation 20/22

Benchmarks are taken from FPBench (see paper)
(operations are restricted to `, ´, ˆ, ˜)

FErA over-approximation bound
Best twice
Second 6 times
Never the worst

FErA solving time is reasonable for most of benchmarks
only one bench timeout at 10 minutes

Contribution

Conclusion 21/22

Rigorous enclosure of round-off errors
Enclosure of a largest absolute error

Reachable primal Ñ provide inputs values exercising the
error

Provides a tighter ē Ñ removes some false positives

Further work

Conclusion 22/22

Tighter representation of round-off errors on
elementary operations

Experimentations with different search strategies

More efficient local search to speed up the primal
computation procedure

	Motivation
	Floating-point numbers
	A constraint system to bound round-off errors
	Rigorous enclosure of round-off errors
	Experimentation
	Conclusion

