Rigorous enclosure of round-off errors in floating-point computations

Rémy Garcia Claude Michel Michel Rueher

Université Côte d’Azur, CNRS, I3S, France
Outline

Motivation

Floating-point numbers

A constraint system to bound round-off errors

Rigorous enclosure of round-off errors

Experimentation

Conclusion
Motivation

- Program on \mathbb{F} written with the semantic of \mathbb{R}
 - $\mathbb{F} \neq \mathbb{R}$
 - Computation over \mathbb{F} produce errors

- Error analysis tools (Fluctuat, FPTaylor, PRECiSA, ...)
 compute an **over-approximation** of the error
 \rightarrow **Computed bounds** of error are rarely **reachable**

- Other tools (S3FP, FPSDP, ...) compute an **under-approximation** of the largest absolute error
 \rightarrow Possible **over-approximation** of bounds

None of these tools provides an **enclosure** of the **largest absolute error**
Motivating example

Consider the following program that compute z and use a conditional to raise an alarm or proceed without it:

$$z = \frac{(3x+y)}{w};$$

```java
if (z - 10 <= δ) {
    proceed();
} else {
    raiseAlarm();
}
```

Critical issue

Is the error on z small enough to avoid raising the alarm when the value of z is less than or equal to 10 on \mathbb{R}?
Motivating example (cont.)

Computation is done over 64-bit floating-point numbers with $x \in [7, 9]$, $y \in [3, 5]$, $w \in [2, 4]$, and δ set to $5.32e-15$.

<table>
<thead>
<tr>
<th></th>
<th>FPTaylor</th>
<th>PRECiSA</th>
<th>Fluctuat</th>
<th>FErA</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{e}_z</td>
<td>5.15e-15</td>
<td>5.08e-15</td>
<td>6.28e-15</td>
<td>4.96e-15</td>
</tr>
</tbody>
</table>

Bounds are smaller than δ \rightarrow no alarm for $z \leq 10$.

FErA output an enclosure of $[3.55e-15, 4.96e-15]$ for e_z with

- $x = 8.99999999999996624922$ $e_x = -8.88178419700125232339e-16$
- $y = 4.99999999999994848565$ $e_y = -4.44089209850062616169e-16$
- $w = 3.19999999999998419042$ $e_w = +2.22044604925031308085e-16$
- $z = 10.00000000000000035527$ $e_z = -3.55271367880050092936e-15$
Let us change \(\delta \) to \(3.55e-15 \)

FErA provides one case where the else branch is taken and \textbf{input values} exercising it

\[
\begin{align*}
 x &= 8.9999999999996624922 & e_x &= -8.88178419700125232339e-16 \\
 y &= 4.9999999999994848565 & e_y &= -4.44089209850062616169e-16 \\
 w &= 3.1999999999998419042 & e_w &= +2.22044604925031308085e-16 \\
 z &= 10.0000000000000035527 & e_z &= -3.55271367880050092936e-15
\end{align*}
\]

Fluctuat, FTPaylor, and PRECiSA are unable to do so, as they only compute an \textbf{over-approximation} of errors
Floats – definition

- F is a finite subset of \mathbb{R}

$-\infty$ \hspace{1cm} 0 \hspace{1cm} $+\infty$

\mathbb{R} (horizontal line) and F (vertical lines)

- IEEE 754 floats are represented by
 - a sign
 - a mantissa
 - an exponent

$(-1)^s \times 1.m \times 2^e$

$(-1)^0 \times 1.00010001101011010 \ldots 0 \times 2^{-1} \approx 0.53452301025390625$
Floats – rounding

Problem: \(x, y \in \mathbb{F} \rightarrow x \cdot y \notin \mathbb{F} \), where \(\cdot \) is an operation on \(\mathbb{R} \)

- **Require rounding** \(\circ \) of the result to the closest float
 - Loss of **precision** \(\circ(x) \) usually not equal to \(x \)
 - Root of the **divergence** between \(\mathbb{R} \) and \(\mathbb{F} \)

\[
\circ(0.1) = 0.100000000001490116119384765625
\]

- **Rounding accumulation**
 - Rounding on **all operations** \(\circ(\circ(x \cdot y) \cdot z) \)
 - Increase the **divergence** between \(\mathbb{R} \) and \(\mathbb{F} \)
 - Reduce or cancel an error with **error compensation**

\[
\circ(\circ(0.1 + 0.2) + 0.2) = 0.5
\]

\[
e = -e \approx 7.4505805969238281e-09
\]
Constraint Programming (CP) is a paradigm used for solving NP-complete combinatorial problems.

Explicit separation between
- **modelling**, which is a formalisation of the problem,
- and **solving**, that uses dedicated techniques to find a solution.
How does CP work?

Modelling
A CSP \((\mathcal{X}, \mathcal{D}, \mathcal{C})\) is defined by:

- \(\mathcal{X}\) is the set of variables
- \(\mathcal{D}\) is the set of domains
 - A domain is the set of all possible values for each \(x \in \mathcal{X}\)
- \(\mathcal{C}\) is the set of constraints
 - A constraint is a relation between variables

Solving
- **Filtering**, removes trivially inconsistent values from domains of variables in a constraint
 - **Propagate** to other constraints with common variables
- **Search**, selects a variable and splits its domain, according to a search strategy

→ The solving process is repeated until a solution is found or when the search space is fully explored
Let x be a floating-point variable of a CSP.

Domain of values D_x
- Interval of \mathbb{F}
- **Cannot** represent the associated error ($\notin \mathbb{F}$)

Domain of errors D_{ex}
- Interval of \mathbb{Q}
- **Correctly** represents an error
 - For $+, -, \times, \div$
Filtering – error computation

- Compute errors over \mathbb{Q}
 - **Exact computation** of errors

 $$ e = (x_R \cdot y_R) - (x_F \odot y_F) $$

 with \cdot an operation over \mathbb{R} and \odot an operation over \mathbb{F}
 (operations are restricted to $+, -, \times, \div$)

- Signed errors
 - Possible *compensation* of errors
Filtering – domains of variables

Domain of values D_x

Projection functions from [Michel02], [BotellaGM06], and [MarreM10]

Domain of errors D_{ex}

Projection functions based on $(x_R \cdot y_R) - (x_F \oplus y_F)$

Error filtering on which constraints?

- **Arithmetic constraints**: $+, -, \times, \div$
- **Assignement constraint**: propagation of the error

Example for $z = x - y$

- $e_z \leftarrow e_z \cap (e_x - e_y + e_\Theta)$
- $e_x \leftarrow e_x \cap (e_z + e_y - e_\Theta)$
- $e_y \leftarrow e_y \cap (e_x - e_z + e_\Theta)$
- $e_\Theta \leftarrow e_\Theta \cap (e_z - e_x + e_y)$

A constraint system to bound round-off errors
Consider $z = x \odot y$

IEEE 754, operations correctly rounded: $\oplus, \ominus, \otimes, \oslash$

$$(x \odot y) - \frac{1}{2} \text{ulp}(x \odot y) \leq x \cdot y \leq (x \odot y) + \frac{1}{2} \text{ulp}(x \odot y)$$

ulp: distance between two consecutive floats

Error on the operation

$$-\frac{1}{2} \text{ulp}(x \odot y) \leq e_\odot \leq +\frac{1}{2} \text{ulp}(x \odot y)$$
New notation for constraints over errors

$$\text{err}(x) \geq \epsilon$$

- $\text{err}(x)$ represent the domain of errors of variable x
- $\text{err}(x) \in \mathbb{Q}$, the constraint is over \mathbb{Q}

Modelize a program as an optimization problem

$$\max | \text{err}(x) |$$
Branch-and-bound – schema

- Computes two bounds of errors:
 - Dual: **upper bound** of error, \bar{e} (filtering)
 - over-approximation
 - Primal: **lower bound** of error, \hat{e} (generate-and-test)
 - reachable \rightarrow provides input values

- Error **maximization** directed by **search on values**
 - explore finite search space in \mathbb{F} \rightarrow infer error

- A maximal error is in general **hard** to find

- **Anytime algorithm** \rightarrow provides input values, e^*, and \bar{e}
Stopping criteria

Operation error: e_{\circ} and z result of operation

\[e_{\circ} \leq \frac{1}{2}\text{ulp}(z) \]

→ highly dependent on the distribution of floats

Consider interval $(2^n, 2^{n+1})$

- Distance between two floats is the same
- All floats have the same ulp

→ cannot improve e_{\circ} by means of projection functions

Once results for all operations satisfy this criteria, stop the exploration of this part of the search space
A box B can be in one of the following three states:

- **unexplored**

- **discarded**, s.t. $\bar{e}^B \leq e^*$

- **sidelined**, s.t. stopping criteria is true
 - e^S is max \bar{e}^B of sidelined boxes
Bounding – dual computation

Computation based on constraint programming filtering

- projection functions

\[
\begin{align*}
 e_z &\leftarrow e_z \cap (e_x - e_y + e_\Theta) \\
 e_x &\leftarrow e_x \cap (e_z + e_y - e_\Theta) \\
 e_y &\leftarrow e_y \cap (e_x - e_z + e_\Theta) \\
 e_\Theta &\leftarrow e_\Theta \cap (e_z - e_x + e_y)
\end{align*}
\]

For a box \(B \)

- Propagate constraints to filter domains
- Update \(\overline{e} \) with max between:
 - \(\overline{e} \) of unexplored boxes
 - \(\overline{e}^S \) of sidelined boxes
Bounding – primal computation

Generate-and-test: random instantiation of input variables

For each box B repeat n times

- Randomly instantiate input variables with respect to domains of values
- Compute $f_Q() - f_F()$
- Local search (m steps):
 - explore floats around input values
 - guided by the best local value of the error
 - Compute $f_Q() - f_F()$

→ Update e^* with best computed error
Branching – explore boxes

Variable selection

- Choose in **round-robin** order a variable x that is not a singleton

Domain splitting

- Apply a bisection on the domain of values of x to generate two subboxes

Box selection

- Use **best-first search** to select a box B with the greatest upper bound of error
Benchmarks are taken from **FPBench** (see paper)

- (operations are restricted to $+, -, \times, \div$)

FErA over-approximation bound

- Best **twice**
- Second **6 times**
- **Never** the worst

FErA solving time is **reasonable** for most of benchmarks

- only one bench timeout at 10 minutes
Contribution

Rigorous enclosure of round-off errors

- **Enclosure** of a largest absolute error
- Reachable primal \rightarrow provide inputs values **exercising** the error
- Provides a **tighter** \bar{e} \rightarrow removes some **false positives**
Further work

- **Tighter representation** of round-off errors on elementary operations
- Experimentations with different **search strategies**
- More efficient **local search** to speed up the primal computation procedure