Rigorous enclosure
of round-off errorsin
floating-point computations

NSV 2020

Rémy Garcia Claude Michel Michel Rueher

Université Cote d'Azur, CNRS, 13S, France

July 20, 2020

Motivation

Floating-point numbers

A constraint system to bound round-off errors
Rigorous enclosure of round-off errors
Experimentation

Conclusion

= Program on [written with the semantic of R

= F#R
= Computation over F produce errors

= Error analysis tools (Fluctuat, FPTaylor, PRECIiSA, ...)
compute an over-approximation of the error
— Computed bounds of error are rarely reachable

= Other tools (S3FP, FPSDP, ...) compute an
under-approximation of the largest absolute error
— Possible over-approximation of bounds

None of these tools provides an enclosure of the largest
absolute error

Motivation 1/22

Motivating example

Consider the following program that compute z and use a
conditional to raise an alarm or proceed without it

z = (3xxty)/w;

if (z— 10 <=90) {
proceed ();

} else {
raiseAlarm ();

}

Is the error on z small enough to avoid raising the alarm
when the value of z is less than or equal to 10 on R?

Motivation 2/22

Motivating example (cont.)

Computation is done over 64-bit floating-point numbers with
x€[7,9], ye[3,5], we[2,4], and ¢ set to 5.32e—15

FPTaylor PRECISA Fluctuat FErA
e, b5.15e-15 5.08e-15 6.28e-15 4.96e-15

[Bounds are smaller than § — no alarm for z < 10]

FErA output an enclosure of [3.55e—15,4.96e—15] for e, with

z = 8.99999999999996624922 e, = —8.88178419700125232339¢—16
y = 4.99999999999994848565 e, = —4.44089209850062616169¢—16
w = 3.19999999999998419042 e,, = +2.22044604925031308085e—16
z = 10.0000000000000035527 e, = —3.55271367880050092936e—15

Motivation 3/22

Motivating example (cont.)

Let us change ¢ to 3.55e—15

FErA provides one case where the else branch is taken and
input values exercising it

z = 8.99999999999996624922 e, = —8.88178419700125232339¢—16
y = 4.99999999999994848565 e, = —4.44089209850062616169¢—16
w = 3.19999999999998419042 e,, = +2.22044604925031308085e—16
z = 10.0000000000000035527 = —3.55271367880050092936e—15

I

®
183
|

Fluctuat, FPTaylor, and PRECiSA are unable to do so, as they
only compute an over-approximation of errors

Motivation 4/22

Floats — definition

= T is a finite subset of R

—0 0 +
VBAR A AL s e

R (horizontal line) and IF (vertical lines)

= |EEE 754 floats are represented by
= asign
= a mantissa
= an exponent

(—=1)° x 1 x 2°
(—1)° x 1.00010001101011010..0 x 2~ ~ 0.53452301025390625

Floating-point numbers 5/22

Floats —rounding

Problem: z,y e F — 2= -y ¢ IF, where - is an operation on R

= Require rounding o of the result to the closest float

* Loss of precision o(z) usually not equal to z
* Root of the divergence between R and F

0(0.1) = 0.100000001490116119384765625

= Rounding accumulation

* Rounding on all operations o(o(x - y) - 2)
= lIncrease the divergence between R and F
* Reduce or cancel an error with error compensation

o(o(0.1 +0.2)40.2) = 0.5
e = —c ~ 7.4505805969238281¢—09

Floating-point numbers 6/22

Constraint Programming: overview

Constraint Programming (CP) is a paradigm used for solving
NP-complete combinatorial problems

Explicit separation between

* modelling, which is a formalisation of the problem,
* and solving, that uses dedicated techniques to find a
solution

A constraint system to bound round-off errors 7/22

How does CP works?

Modelling
A CSP (X,D,C) is defined by:
= X is the set of variables
= D is the set of domains
> A domain is the set of all possible values for each x € X
= (is the set of constraints
> A constraint is a relation between variables

Solving
» Filtering, removes trivially inconsistant values from
domains of variables in a constraint
> Propagate to other constraints with common variables
* Search, selects a variable and splits its domain,
according to a search strategy

— The solving process is repeated until a solution is
found or when the search space is fully explored

A constraint system to bound round-off errors 8/22

Domain of errors over Q

Let = be a floating-point variable of a CSP

Domain of values D, Domain of errors Dg,,

= Interval of F = Interval of Q
= Cannot represent = Correctly
the associated error represents an error
(¢ F) * For +,—, x,+
x
Dm Dex

A constraint system to bound round-off errors 9/22

Filtering — error computation

= Compute errors over
* Exact computation of errors
e = (xr-yr) — (Xr OyF)

with - an operation over R and ® an operation over F
(operations are restricted to +, —, X, =)

= Signed errors
* Possible compensation of errors

A constraint system to bound round-off errors 10/22

Filtering —domains of variables

Domain of errors D,

Projection functions from L)
[Michel02],[BotellaGMO6] Projection functions based
and [MarreM10] on (xg - yr) — (x¢ O yr)

Error filtering on which constraints?

= Arithmetic constraints: +, — x, +
= Assignement constraint: propagation of the error

Example for z = x — y

11/22

A constraint system to bound round-off errors

Filtering —operation error

Consider z =z Oy

IEEE 754, operations correctly rounded: &,0,®,©®

1 1
(X@y)—ﬁulp(XGy) <x-y< (X@y)+§u1p(><®y)

ulp: distance between two consecutive floats

Error on the operation

1 1
-5 ulp(xQy) <ep < +§ ulp(xQy)

A constraint system to bound round-off errors 12/22

Constraint over errors

= New notation for constraints over errors

err(x) = €

* err(x) represent the domain of errors of variable z
» err(z) € Q, the constraint is over Q

Modelize a program as an optimization problem

max | err(z) |

A constraint system to bound round-off errors 13/22

Branch-and-bound —schema

= Computes two bounds of errors:
* Dual: upper bound of error, € (filtering)
> over-approximation
* Primal: lower bound of error, e* (generate-and-test)
> reachable — provides input values

= Error maximization directed by search on values
» explore finite search space in F — infer error

= A maximal error is in general hard to find

= Anytime algorithm — provides input values, e*, and e

Rigorous enclosure of round-off errors 14/22

Stopping criteria

Operation error: eg and z result of operation

eo < -ulp(2)

— highly dependent on the distribution of floats

Consider interval (27,27+1)
= Distance between two floats is the same
= All floats have the same ulp

— cannot improve es by means of projection functions

Once results for all operations satisfy this criteria, stop the
exploration of this part of the search space

Rigorous enclosure of round-off errors 15/22

Branch-and-bound — boxes

A box B can be in one of the following three states:
= unexplored
= discarded, s.t. €% < e*

= sidelined, s.t. stopping criteria is true
= % is max e? of sidelined boxes

Rigorous enclosure of round-off errors 16/22

Bounding — dual computation

Computation based on constraint programming filtering

= projection functions

For a box B
= Propagate constraints to filter domains
= Update & with max between:

= € of unexplored boxes
» @ of sidelined boxes

Rigorous enclosure of round-off errors 17/22

Bounding — primal computation

Generate-and-test: random instantiation of input variables

For each box B repeat n times

= Randomly instantiate input variables with respect to
domains of values

= Compute fo() — fr()

= Local search (m steps):
= explore floats around input values
> guided by the best local value of the error

= Compute fo() — fr()

— Update e* with best computed error

Rigorous enclosure of round-off errors 18/22

Branching — explore boxes

Variable selection

= Choose in round-robin order a variable z that is not a
singleton

Domain splitting
= Apply a bisection on the domain of values of = to
generate two subboxes

Box selection

= Use best-first search to select a box B with the greatest
upper bound of error

Rigorous enclosure of round-off errors 19/22

Experimentation —FPBench

Benchmarks are taken from FPBench (see paper)

= (operations are restricted to +, —, x, =)

FErA over-approximation bound
= Best twice
= Second 6 times
= Never the worst

FErA solving time is reasonable for most of benchmarks

= only one bench timeout at 10 minutes

Experimentation 20/22

Contribution

Rigorous enclosure of round-off errors
= Enclosure of a largest absolute error

= Reachable primal — provide inputs values exercising the
error

= Provides a tighter e — removes some false positives

Conclusion 21/22

"

Tighter representation of round-off errors on
elementary operations

= Experimentations with different search strategies

"

More efficient local search to speed up the primal
computation procedure

Conclusion 22/22

	Motivation
	Floating-point numbers
	A constraint system to bound round-off errors
	Rigorous enclosure of round-off errors
	Experimentation
	Conclusion

