Automatic Testing with Dynamically Constrained
Reinforcement Learning

Xin Qin, Nikos Arechiga, Andrew Best, Jyotirmoy Deshmukh

Paper preprint: https://arxiv.org/pdf/1910.13645.pdf
//"
\) 1

TOYOTA

EEEEEEEEEEEEEEEEE



Controllable Al for automatic testing

Want an adversarial agent that can automatically

learn to cause ego to make a mistake.

Learn to respect rules chosen from hierarchical
rulebooks (a la nutonomy):

- Specify which rules ado must follow,

- Prevent unreasonable behavior, such as driving
the wrong way down the freeway.

* We call these logical scaffolds.

- Logical structures around which the Al grows and
becomes stronger

Use logical scaffold to declaratively control the
behaviors of the agent.
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-
Formal problem statement

e Glven
- A scenario

* “follow lead car on freeway”, “intersection with
yellow light”

- Atarget specification
* “make ego rear-end you”, “make ego run red light”

- Logical scaffolds that constrain allowed behavior

* Intelligent agent should find an ego specification
violation while respecting its constraints




Solution components

e Train: reinforcement learning
- Tabular
- Neural network

* Represent logical scaffolds as STL
formulas

* Implementations:
- PyTorch
- CARLA
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“l always stay in my lane” "
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Signal Temporal Logic (STL)

A(—l+p <z <{l—p)
“l always stay in my lane”

A(brake =1 — &jp,0.1j0 = decel)

“If the driver presses brake
pedal, eventually after at most
0.1 seconds, | apply
deceleration”
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-
Boolean and guantitative semantics

* Boolean: is the property true at each point in time?

* Quantitative: how true is the property? (“robust satisfaction”)
- For inequalities, difference between left and right
- For “and”, smallest robustness of subformulas
- For “or”, largest robustness of subformulas
- For “eventually”, largest robustness over the trace
- For “always”, smallest robustness over the trace
- “Until” is an “always”, until the second condition is true
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Monitors can be automatically synthesized

drive_in_lane = ((left_lane_boundary + margin <= x_lat - 0.5%car_width)
& (x_lat + 0.5%car_width <= right_lane_boundary - margin))

aw_drive_in_lane = stl.Always( drive_in_lane )

aw_drive_in_lane.plot(trace)
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STL @ Toyota

Mining Requirements from Closed-Loop Control Models

it & ki 0 (11 1 ”n H
e a N paneaend,, St - Our “weapon of choice” for logical
jinx@cs.ucr.edu donze@eecs.berkeley. edu jyotirmoy.deshmukh@tema. toyota.com

Sanit A. Seshia SpeCifica’[ionS.

Univ. of California Berkeley

sseshialeecs.berkelay. sdu

Robust Online Monitoring of Signal Temporal Logic - Some groups in Japan also use it.

Iyotirmoy V. Deshmukh?, Alexandre Donzé?, Shromona Ghosh?®
Xiaoging Jin®, Garvit Juniwal®, and Sanijit A. Seshia®

p Toyota Technical Center, firstname lastnamefitema toyota.com
* University of California Berkeley,
{dnnze. shromona.ghosh, garvitjuniwal, sseshia] flaecs. berkeley edu

Property-Driven Runtime Resolution of
Feature Interactions

Santhana Gopalan Raghavan', Kosuke Watanabe®, Eunsuk Kang®, Chung-Wei
Lin?. Zhihao Jiang”®. and Shinichi Shiraishi*

! University of Southern California, USA santhanr@usc. sdu
? Toyota InfoTechnology Center, USA {kwatanabe,sshiraishi}@us. toyota-itc.com
¥ Carr Mellon University, USA eskang@cmu. adu
4 National Taiwan University, Taiwan cwlin@csie.ntu.edu.tw
® ShanghaiTech University, China jiangzhh@shanghaitech.adu.cn

Backpropagation for Parametric STL

Karen Leung,! Nikos Aréchiga® and Marco Pavone! 8

RESEARCH INSTITUTE



Reinforcement Learning
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e Continuous State:
o Velocities
o Distances

$

Simulator

Q(St, Ar) + Q(St, A) + [ Reps +ymaxQ(Si1,a) — Q(Si, Av)|.

() Neural networks (hopefully) generalize to unseen states 10
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I
Implementation

* Implementation on TRI's internal simulator

— Due to time constraints of Xin’s internship, used a
simplified ego controller

e CARLA implementation
- For research publication purposes
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\ (a) Case Study I: Driving in lane with lead vehicle. (b) Case Study II: Left vehicle merges in front. (c) Case Study II1: Yellow hg‘ht Tun- 11
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Philosophical results

* A unified framework to declaratively specify what
should be done

* Technigues to automatically monitor that it is being
done

* Use of RL to synthesize agents that automatically
learn how to do what is required
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e
The future of Loki

e Goal: “To build an evil Al and hire it as a consultant”.

 Algorithmic flexiblility: Loki should have a “bank” of algorithms
it tries, and selects the one that performs the best on that
particular scenario

* Investigate transferability of adversaries across parametric
variations of driving stack, and composabillity of agents
across scenarios

* Further case studies: working on integrating Carla and
OpenPilot for further development
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