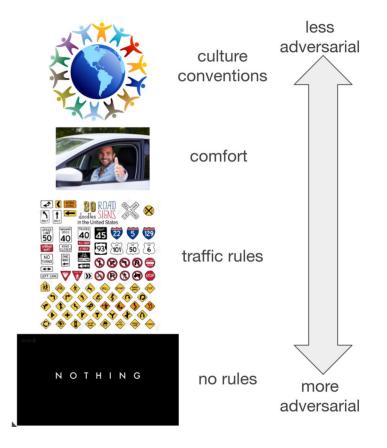
Automatic Testing with Dynamically Constrained Reinforcement Learning

Xin Qin, Nikos Arechiga, Andrew Best, Jyotirmoy Deshmukh

Paper preprint: https://arxiv.org/pdf/1910.13645.pdf

Controllable AI for automatic testing

- Want an adversarial agent that can automatically learn to cause ego to make a mistake.
- Learn to respect rules chosen from hierarchical rulebooks (a la nutonomy):
 - Specify which rules ado must follow,
 - Prevent unreasonable behavior, such as driving the wrong way down the freeway.
- We call these logical scaffolds.
 - Logical structures around which the AI grows and becomes stronger
- Use logical scaffold to declaratively control the behaviors of the agent.

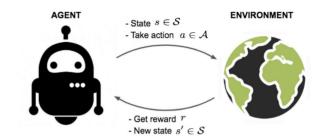


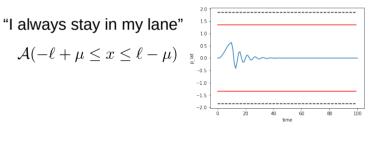
Formal problem statement

- Given
 - A scenario
 - "follow lead car on freeway", "intersection with yellow light"
 - A target specification
 - "make ego rear-end you", "make ego run red light"
 - Logical scaffolds that constrain allowed behavior
- Intelligent agent should find an ego specification violation while respecting its constraints

Solution components

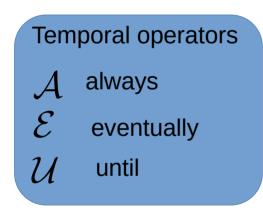
- Train: reinforcement learning
 - Tabular
 - Neural network
- Represent logical scaffolds as STL formulas
- Implementations:
 - PyTorch
 - CARLA





Signal Temporal Logic (STL)

 $s \hspace{0.1 cm} \begin{tabular}{c} "signals", functions \\ that evolve over time \end{array}$



Functions and inequalities $f(s) < c \label{eq:fs}$

Boolean operators $\land,\lor,\lnot,\rightarrow$

 $\mathcal{A}(-\ell + \mu \le x \le \ell - \mu)$

"I always stay in my lane"

 $\mathcal{A}(brake = 1 \to \mathcal{E}_{[0,0.1]}a = decel)$

"If the driver presses brake pedal, eventually after at most 0.1 seconds, I apply deceleration"

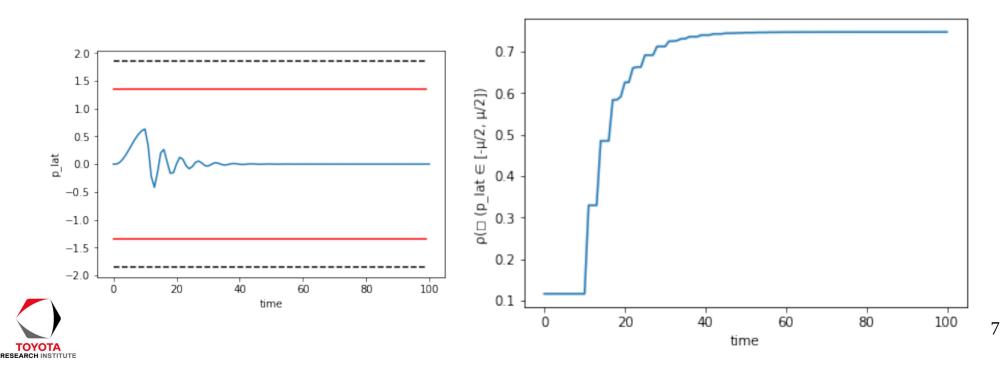
Boolean and quantitative semantics

- Boolean: is the property true at each point in time?
- Quantitative: how true is the property? ("robust satisfaction")
 - For inequalities, difference between left and right
 - For "and", smallest robustness of subformulas
 - For "or", largest robustness of subformulas
 - For "eventually", largest robustness over the trace
 - For "always", smallest robustness over the trace
 - "Until" is an "always", until the second condition is true

Monitors can be automatically synthesized

aw_drive_in_lane = stl.Always(drive_in_lane)

aw_drive_in_lane.plot(trace)



STL @ Toyota

Mining Requirements from Closed-Loop Control Models

Xiaoqing Jin Univ. of California Riverside jinx@cs.ucr.edu Alexandre Donzé Univ. of California Berkeley donze@eecs.berkeley.edu jvotirmov.deshmukh@tema.tovota.com

Sanjit A. Seshia Univ. of California Berkeley sseshia@eecs.berkeley.edu

Robust Online Monitoring of Signal Temporal Logic

Jyotirmoy V. Deshmukh¹, Alexandre Donzé², Shromona Ghosh² Xiaoqing Jin¹, Garvit Juniwal², and Sanjit A. Seshia²

¹ Toyota Technical Center, firstname.lastname@tema.toyota.com ² University of California Berkeley, {donze, shromona.ghosh, garvitjuniwal, sseshia}@eecs.berkeley.edu

> Property-Driven Runtime Resolution of Feature Interactions

Santhana Gopalan Raghavan¹, Kosuke Watanabe², Eunsuk Kang³, Chung-Wei Lin⁴, Zhihao Jiang⁵, and Shinichi Shiraishi²

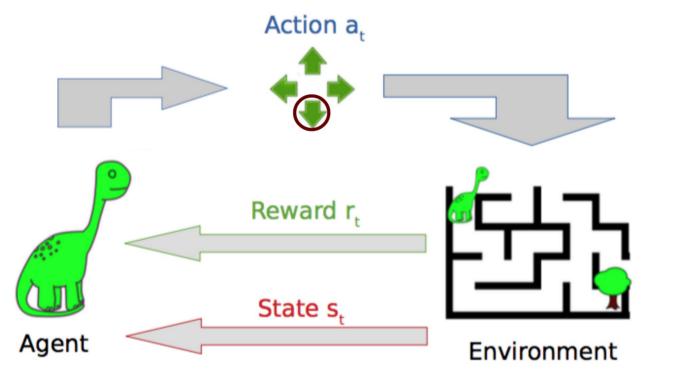
¹ University of Southern California, USA santhanr@usc.edu
² Toyota InfoTechnology Center, USA {kwatanabe,sshiraishi}@us.toyota-itc.com
³ Carnegie Mellon University, USA eskang@cmu.edu
⁴ National Taiwan University, Taiwan cwlin@csie.ntu.edu.tw
⁵ ShanghaiTech University, China jiangzhM@shanghaitech.edu.cn

Backpropagation for Parametric STL

Karen Leung,1 Nikos Aréchiga2 and Marco Pavone1

- Our "weapon of choice" for logical specifications.
- Some groups in Japan also use it.

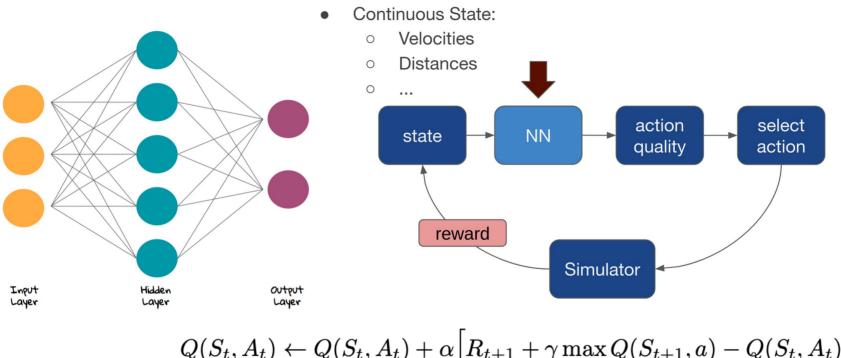
Reinforcement Learning



- State

- Actions

- Reward



$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \Big].$$

TOYOTA RESEARCH INSTITUTE

Neural networks (hopefully) generalize to unseen states

10

_

Implementation

- Implementation on TRI's internal simulator
 - Due to time constraints of Xin's internship, used a simplified ego controller
- CARLA implementation
 - For research publication purposes

(a) Case Study I: Driving in lane with lead vehicle.

(b) Case Study II: Left vehicle merges in front.

(c) Case Study III: Yellow light running.

Fig. 1: Simulation environments for case studies

Philosophical results

- A unified framework to declaratively specify *what* should be done
- Techniques to automatically monitor that it is being done
- Use of RL to synthesize agents that automatically learn *how* to do what is required

The future of Loki

- Goal: "To build an evil AI and hire it as a consultant".
- Algorithmic flexibility: Loki should have a "bank" of algorithms it tries, and selects the one that performs the best on that particular scenario
- Investigate transferability of adversaries across parametric variations of driving stack, and composability of agents across scenarios
- Further case studies: working on integrating Carla and OpenPilot for further development

