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The Efficiency Challenge in Learning
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von Neumann Architectures
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fundamental question

how do we desigh learning machines that

operate at the limits of accuracy-robustness-
energy efficiency with guarantees?
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Shanbhag Group Research Vectors

energy efficient circuit architectures applications

 Computer Vision

e ATR

* RF Signal Processing
* Biomedical

http://shanbhag.ece.lllinois.edu

low complexity algorithms
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Machine Learning in Reduced Precision

Intel’s NNP IBM’s Al Core
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[ISSCC’16] [ISCA’17] [NIPS’17] [VLSI'18]
8b fixed-point 16b flexpoint 16b floating-point

16b fixed-point

(inference) (training) (training)

(inference)
16b floating-point
(training)

Are these the minimum precisions required?
Can minimum precision requirements be determined analytically?

UIUC (Sakr, Shanbhag) - ICML 2017, ICASSP 2018, ICLR 2019, ICLR 2019 (with IBM)
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Outline

1) “What are the minimum output precision requirements of a dot
product kernel in order to meet a specific accuracy requirement at its
output (DP accuracy)?”

2) “What are the minimum precision requirements of a DNN to meet a
specific accuracy requirements at its output (network accuracy)?”

3) employ the above two insights to determine the precision limits of the
recently proposed in-memory computing (IMC) architectures.
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Minimum Output Precision Requirements for Dot
Product
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Why Output Precision B,,?

fy(Yo)

— T
Vg =W x+qy

* B, is the accumulator precision in digital architectures — accumulator complexity
dominates power in low-precision DNNs

— e.g., 32b accumulator 10x more power than a 3x1-b multiplier in 28nm CMOS — hence research on low-
resolution accumulation [Sakr ICLR19; Wang NeurlPS’18]

* B, is the ADC precision in in-memory architectures — ADCs can dominate (~80%) latency
and power when implementing DNNs [Kim ISLPED’18, Rekhi DAC’20]
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Quantization Noise Model

quantizer symbol A x additive model
B, B,
x — Q [F* x4 X Xqg =X+ gy

* additive model assumption: g, is independent of x
* SONR :signal-to-quantization noise ratio = accuracy measure
* ( :peak-to-average (power) ratio = measure of ‘peakiness’ of signal distribution

2 SONR,.(dB) = 6B, + 4.78 — {, (dB)
SONR, = 10log4, [—’;] [ = Xm
O'qx X O,
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Fixed-Point Dot Product

\ideal FL output |
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Accuracy Metrics for Quantized Dot Products

-1

1, 1
SQNR,, ~ SQNR,

SQNR = | Limited by SQNRg,

 Choose SQNR,(dB) = SQNRg,, (dB) + 9 to minimize (< 0.5dB) its impact on SQN R

SQNR, (dB) = 6B, + 4.8 — [{,.(dB) + {,,(dB)] — 101og,(N)

* But for fixed B),: SQNR,,(dB) reduces with N (N in hundreds in DNNs) — increase B,,
* Butlarge B, — leads to very large accumulator bit widths

* How to choose output precision B,,?
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Bit Growth Criterion (BGC) for Choosing B,,

)

‘ B, = B, + B,, + log,(N) ‘

SQNR;°“(dB) = 6(B, + B,,) + 4.8 — [{,,(dB) + {,,(dB)] + 10log;,(N)

« commonly employed in digital architectures and network design

* B, (accumulator precision) and SQNR,, both increase with N
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Proposed - Minimum Precision Criterion (MPC)

| fr Oo, N2)
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0.2
SQNRy/P¢(dB) = 6B, + 4.8 — ¢;/7“(dB) ~ 10logs (1 + P (,—>
Ay

* allow for a non-zero but small probability of clipping (p.) — BGC avoids clipping

* exploits reduction in % of y, with N (Central Limit Theorem)

* exhibits a trade-off between clipping noise and quantization noise
it ILLINOIS
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Comparing MPC and BGC

B MPC (B, = 8); ® BGC(B,); A tBGC

19) (19) (19) (20) (20) (20) (20) (20) (290)
(17) (18) a9 5 L St el SEDEY SRy

SQNR, (dB)

15 ILLINOIS

MPC achieves the desired SQNR,
with minimum precision (B, = 8)

BGC is a huge overkill = leads to
very large accumulator bit widths
(B, = 16 to 20)

tBGC (truncated BGC) needs B, =
12 (still significant)

Use MPC to assigh minimum
output (accumulator) precision
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Input Precision Requirements for DNNs
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Related Works

 much work on reduced precision machine learning since 2015 [stochastic
rounding, BinaryNets, TernGrad, pruning...]

* largely based on heuristics — relying on the benevolence of SGD
* lacking theoretical guarantees on accuracy — try and hope it works!

o difficult to realize in H/W — complex and irregular arithmetic
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Deep Learning in Finite Precision

Fixed-point inference with Fixed-point training with Fl.-pt. training with

theoretical guarantees close-to-minimal accumulation
A precisions bit-width scaling
(e ez 0
1 \ R T ol
BaXN {wh}hew D, o o Si—1 T1 X X X X X X
Bv?l\ # B . le(m) 1 1 )1( z i 2 x?geat,Mbits swamped
— / [} mj/l 1V0 | @4—(}(}—}' o 1 x|x x x Stage 3: 3 bits swamped
o ol g 7 | o] o ! B AR o o1 o
P < 83 + A B Cla: o] gy
Sakr, Kim, Shanbhag Sakr & Shanbhag Sakr & Shanbhag
ICML 2017 ICLR 2019 (with K. Gopalakrishnan [IBM])
Sakr & Shanbhag
ICASSP 2018 ICLR 2019

17 ILLINOIS code available at https://github.com/charbel-sakr
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Precision Analysis Framework

pre-trained baseline

| Floating-point j——» 7
{ah}hEA g Neltworkl Jri E 4 (activation noise gain)
T mismatch probability
B A 3 3 2 2
AN {wn }hew # pm = Pr{Yy, # Yy} pm S AYE A+ A Bw

Bw)l\
) ) / Ey (weight noise gain)
Fixed-point ~
Network Ytfa

* no retraining; per-layer precision; activation vs. weight trade-off
* noise gains computed via one standard backprop iteration
* minimizing p,, done via noise equalization (NE)
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Lesson 1 — Precision Trade-offs Captured Analytically
CIFAR-10 using ResNet 18

1.0 Y ‘
1 —— FX Sim: identical
0.5 || -®- Bound: identical
Eal ' ': —— FX Sim: per-layer Bay = Bw,; = Bmin
By, = log; ,/E =+ Bmin ! Bound: per-layer ] foril=1..L
min [
O 0.6 1 i \
& I.ItJ I| /
+— 1
EWl 0 0.4 - ‘
BW,l = 1082 /E— + Bnin =
min

S-[‘]{] 020805 0g(

10 12 14 16 18 20

0.0

bound predicts minimum precision within 1~2 bits

bound reveals trade-offs between network precisions

* trade-offs captured by relative values of noise gains
it ILLINOIS
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Lesson 2 — Precision Decreases with Depth

CIFAR-10 using VGG-9

[ ] EA,l; - EW,l; - BA,l; ] BW,l

127
: : : o 10°f
* weights typically require more g
precision than activations b g
.. S 10° ¢ S
* precision decreases because early B 8
perturbations are most destructive g &
=l
< 10
=
<
12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Layer depth Layer depth
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Lesson 3 — BinaryNets are More Complex than
Minimum Precision Networks

CIFAR-10 using VGG-9

03 03
0.25 0.25}
§ 0.2 = 0.2¢
5 E
+ [«5]
n +2
L 17
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B 015
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oql 1 ~3.5x | ] : ~1.9x
1o’ 107 ' 4 5 6 7 8
Computational cost (#FAs) Representational cost (Mbits)

-@- per-layer
-il- coarse-grained

- identical

stochastic rounding
[Gupta et al., ICML'15]

BinaryNet
[Hubara et al., NIPS’16]

* up to 3.5x lower complexity & 2X lower storage over BinaryNet at iso-accuracy

 empirically observed by [Moons, Verhelst]
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Challenges in Fixed-point Training

nput | A 0 Ar+1 L Step 1: Forward
batch By L B, ST T T T e Propagation

'y A1

~
~

B acc >
Wl( : rW(acc) L \-
Step 3: Update B - Cost L
. 4] -
—[pl———v0 <_69‘_ % funcltlon v

|14
: BGI(W) Gl(W) /,’ (true label)
_4_,:_BGI(A) (,;; w) B .7
— 9: 0 91 07, Step 2: Back
—=— : quantization GI(A) y G 1 P .
B toB bits 118, ropagation

* multiple forward quantization noise sources

* unknown gradient dynamic range

* instability due to quantization noise bias in updates

* back-propagation of quantization noise in activation gradients

* risk of premature stoppage of convergence
it ILLINOIS
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activations & weights

spatio-temporally

varying distributions

Activations layer4.1.outside.activation

gradients
spatio-temporally

varying dynamic range

Activations Gradients layer3.1.outside.activation

gradients & weights

huge dynamic range mismatch

Weights layer3.1.convl.weight
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Criterion 1: equalization of quantization noise gains

E 1 m min E .
Bw, =rnd <1og2 ( g;f) )) + pmin) B, =rnd <log2 ( EA(lr;i)ﬁ;” )) + B(min)

Criterion 2: proper gradient clipping

)

(max) (max)
T = g "o = a
Criterion 3: quantization Criterion 4: back-
bias elimination propagated noise bound
‘ min ‘ 1/4

A Uéz””) A B ‘GZ(W)

G;W) < 4 Gz(ﬁi < )\(max) ‘G(A)‘

Gii—a" i

Criterion 5: accumulator stopping condition

4 v

—Bw, (min)
T (ace) > 2 L A (ace) < A ow)
w, W, v G|
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The Solution

* analytically guaranteed to provide
close-to-minimal precision @ iso-
accuracy

* requires a floating-point network
to be probed during training
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FX Training Converges with Close-to-Minimal
Precisions

CIFAR-10 ConvNet
CIFAR-100 ResNet

4x10°t

°
o 2x10°} e
E @
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o — 10° 4
v © ~ 2
: 8 2 3
> > —
= = > 107 3x10° 2
5 = o w

w )
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h = w et
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o SN —— - 107! n
G L s 5w -

"\\\. -r M L Qe et e e
107! LT A — TLOTSCALIIIRT
0 25 S0 7% 100 125 150 175 200 0 25 SO 75 100 125 150 175 200
Epoch Epoch

 FXtraining was believed to be hard due to dynamic range issues [Koester, NeurIPS'2017]
e proposed FX training is able to match FL training accuracy
e precision assignment found to be nearly minimal
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Per-layer Precision Trends Vary

CIFAR-10 ConvNet _ CIFAR-100 ResNet
C,=1(10.1,5.1,9.0,7.1,16.3) C,=1(13.7,6.1,12.3,10.3,14.1)
211 18
20 4 17 4
19 -« 16 4
18 < 15 4
17 7 14 4
}‘21 13 4
14 - 12 4
2134 2 114
o 12 8 104
5 10 -
# 9- # 81
8 1 74
7 4 6 1
6 3 5 <
57 4 4
44
3 ;: I
2-
17 1+
Q- Q-

1 2 3 a S 6 7 8 9 12345678 910111213141516171819202122
Layer Depth Layer Depth

* weight precision decreases from network input to output
e precisions of activation gradients and weight accumulators increase
* ResNets have uniform precision requirements per tensor type
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Comparison w.r.t. Hyper-precision Reduction

Techniques
C % C A C_M CC. Test C % C A C»M C(; Test
(10°b) | (10°b) | (10°FA) | (10°b) | Error | (10°b) | (10°b) | (10°FA) | (10°b) | Error
CIFAR-10 ConvNet CIFAR-100 ResNet

FL 148 9.3 94.4 49 | 12.02% || 1789 97 4319 597 | 28.06%
FX (C,) | 56.5 1.7 11.9 14 [12.58% | 750 25 776 216 | 27.43%
BN 100 4.7 2.8 49 | 18.50% || 1211 50 128 597 | 29.35%
SQ 78.8 1.7 11.9 14 | 11.32% || 1081 25 776 216 | 28.03%
TG 102 9.3 94.4 3.1 | 12.49% || 1230 97 4319 37.3 | 30.62%

feedforward binarization (BN) and gradient ternarization (TG) fail to match FL accuracy for

same topology

stochastic quantization (SQ) provides marginal returns

BN, TG, SQ do not address the fundamental problem of realizing true FX training
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Precision Requirements for
In-Memory Architectures
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UIUC 6T SRAM Deep In-memory IC Prototypes

100X EDP reduction over von Neumann equivalent” @ iso-accuracy

concept «— 8b compute; 16kB SRAM in 65nm CMOS (UIUC) —>

r

X-address

+ Row Decoder

=2
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Column Decoder

Digital CTRL
=
38

»@
<

Y-address

v
- Digital CTRL

(a)

MR-WL driver& Pulse:
MR-WL drivet& Pulse gen

T3=8Tmin T4 Tmin  T=2Tmin To=Trin
— -« — e ¥

R R o [arxiv’16, JSSC'18]  [ESSCIRC’'17 [ISSCC’18, [CICC20]
[ICASSP’14] JSSC’18] 1SSC’18]

(with Micron)

15 ILLINOIS

Electrical & Computer Engineering
COLLEGE OF ENGINEERING

Naresh Shanbhag — University of lllinois at Urbana-Champaign



Join IEEE | IEEE.org | | IEEE Standards |
23 Mar 2018 | 15:00 GMT

To Speed Up Al, Mix Memory
and Processing

New computing architectures aim to extend artificial

intelligence from the cloud to smartphones Th e Dee p In-memo ry Arc h ite cture
By Kaherie urzac B . ( DI M A)
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Engineering Topics Special Reports

If John von Neumann were designing
a computer today, there’s no way he
would build a thick wall between
processing and memory. At least,
that’s what computer engineer
Naresh Shanbhag of the University
of Illinois at Urbana-Champaign
believes. The eponymous

von Neumann architecture was
published in 1945. It enabled the first
stored-memory, reprogrammable
computers—and it’s been the
backbone of the industry ever since.

Mingu Kang
Sujan Gonugondla
Naresh Shanbhag
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Deep In-memory
Architectures for
Machine Learning

Tearing Down ngls: T_his prototype Now, Shanbhag thinks it’s time to
ifr??r;uerriso?yler‘c':vh(i:t:glﬁs.lgn called deep switch to a design that’s better suited
for today’s data-intensive tasks. In
February, at the International Solid-
State Circuits Conference (ISSCC), in San Francisco, he and others made
their case for a new architecture that brings computing and memory closer
together. The idea is not to replace the processor altogether but to add new “i ”"T qili i
functions to the memory that will make devices smarter without requiring o PRI
more power. S

15 ILLINOIS

Electrical & Computer Engineering
COLLEGE OF ENGINEERING

Burwea) auiypeyy 1o simdayYY Alowaw-uj daag I @

@ Springer

Naresh Shanbhag — University of lllinois at Urbana-Champaign



In-memory ICs for Machine Learning is Hot!
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Research Questions

= |s there a common basis for these architectures?
= What are their precision (compute SNR) limits? (BIG? for IMCs today)
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Fixed-Point Dot Product on IMCs
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0.2
—> SNR, = 22
A a2 =

(analog SNR)

0.2
N SNR, = =22
"l rab =a™ |2 O»éa Ya = Yo+ 4y 47 oz,
(digitization SNR)

+ > Limited by SNR,

SNR, ' SNRq

1 1 ]—1

SNRT — [
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SNR Tradeoffs in Charge Summing Architectures

limited by

1202 E[x?
circuit noise B, =6,B, =6 SNR, = WD[ a,; D, o? 1
50- | E[x%]A% + 0202 + E[xZ]TCE + o2 TCT_OZ + NJ,%C

= discharge current and pulse width trades-off
with clipping noise

E:
= 3 Vm=0.50VA - imited by = clipping noise dominates as dimensionality N
—e— E: VWL=O.7O \% . . .
51 —a- s:vy=070v | clipping INCreases
—e— E: V1 =0.80 V noise ‘
0l == S:Vw=0.80V .
0 100 200 300 400 _
N SNR trades off with N and V.
E: analytical expression  S: simulations
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ADC Precision Requirements

B,=6,B, =6

Optimal
Precision

e )
: Vuwe=0.6 'V, N=300
: Vw=0.6 V, N=300
: Vw=0.7 V, N=150
: Vw=0.7 V, N=150
: Vw=0.8V, N=75
. VWL=O.8 V, N=75

E: analytical expression
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S: simulations

precision limited by SNR,

SNR,(dB) — SNR(dB) < 0.5 dB

SNR,(dB)+16.6

B, > min (logz (Kclip) » -

Naresh Shanbhag — University of lllinois at Urbana-Champaign
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Summary

e Design of DNNs need not be trial-&-error based - analytical methods exist
(for precision assignment) or can be developed

* use MPC & noise gain analysis to determine minimum precisions of DNNs

e parallel considerations for in-memory architectures — interplay between
analog and quantization noise sources

* Next: design optimization framework? network accuracy vs. energy vs.
latency vs....
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Major challenge — engineered design of Al systems —
composability, interpretability, robustness, security, ethics, with guarantees

Machine Learning with
Guarantees

224 x224x3 224 x224x64
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Thank You!

http://shanbhag.ece.uiuc.edu
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