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The Memory Wall in 
von Neumann Architectures

The Efficiency Challenge in Learning
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fundamental question

how do we design learning machines that 
operate at the limits of accuracy-robustness-

energy efficiency with guarantees?
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Shanbhag Group Research Vectors 
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http://shanbhag.ece.Illinois.edu

applications

• Computer Vision
• ATR
• RF Signal Processing
• Biomedical

http://shanbhag.ece.illinois.edu/
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Machine Learning in Reduced Precision

[ISCA’17]

8b fixed-point
(inference)

16b floating-point
(training)

Google’s TPU

Are these the minimum precisions required?
Can minimum precision requirements be determined analytically?

UIUC (Sakr, Shanbhag) - ICML 2017, ICASSP 2018, ICLR 2019, ICLR 2019 (with IBM)

[ISSCC’16]

16b fixed-point
(inference)

MIT’s Eyeriss IBM’s AI Core

[VLSI’18]

16b floating-point
(training)

Intel’s NNP

[NIPS’17]

16b flexpoint
(training)
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• what are the minimum values of 
𝐵!" , 𝐵#" , and 𝐵$" ∀ 𝑙 such that the 
network accuracy is within a Δ of 
floating-point network accuracy?
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Outline
1) “What are the minimum output precision requirements of a dot 

product kernel in order to meet a specific accuracy requirement at its 
output (DP accuracy)?” 

2) “What are the minimum precision requirements of a DNN to meet a 
specific accuracy requirements at its output (network accuracy)?”

3) employ the above two insights to determine the precision limits of the 
recently proposed in-memory computing (IMC) architectures.
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Minimum Output Precision Requirements for Dot 
Product
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• what are the minimum values of 
𝐵!" , 𝐵#" , and 𝑩𝒚𝒍 ∀ 𝑙 such that the 
network accuracy is within a Δ of 
floating-point network accuracy?
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Why Output Precision 𝑩𝒚?

• 𝐵$ is the accumulator precision in digital architectures → accumulator complexity 
dominates power in low-precision DNNs
– e.g., 32b accumulator 10× more power than a 3×1-b multiplier in 28nm CMOS – hence research on low-

resolution accumulation [Sakr ICLR19; Wang NeurIPS’18]

• 𝐵$ is the ADC precision in in-memory architectures → ADCs can dominate (~80%) latency 
and power when implementing DNNs [Kim ISLPED’18, Rekhi DAC’20]
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𝑦! = 𝐰"𝐱 + 𝑞#
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Quantization Noise Model

• additive model assumption: 𝑞! is independent of 𝑥
• 𝑆𝑄𝑁𝑅 : signal-to-quantization noise ratio → accuracy measure
• 𝜁 : peak-to-average (power) ratio → measure of ‘peakiness’ of signal distribution
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Fixed-Point Dot Product
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Accuracy Metrics for Quantized Dot Products

• Choose 𝑆𝑄𝑁𝑅$ 𝑑𝐵 ≥ 𝑆𝑄𝑁𝑅,!" 𝑑𝐵 + 9 to minimize (< 0.5𝑑𝐵) its impact on 𝑆𝑄𝑁𝑅-

• But for fixed 𝐵$: 𝑆𝑄𝑁𝑅$ 𝑑𝐵 reduces with 𝑵 (𝑁 in hundreds in DNNs) → increase 𝐵$
• But large 𝐵$ → leads to very large accumulator bit widths 

• How to choose output precision 𝑩𝒚?
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Bit Growth Criterion (BGC) for Choosing 𝑩𝒚

• commonly employed in digital architectures and network design
• 𝐵$ (accumulator precision) and 𝑆𝑄𝑁𝑅$ both increase with 𝑵

14

𝐵# = 𝐵$ + 𝐵+ + log'(𝑁)

𝑆𝑄𝑁𝑅#-./ 𝑑𝐵 = 6 𝐵$ + 𝐵+ + 4.8 − 𝜁$ 𝑑𝐵 + 𝜁+ 𝑑𝐵 + 10 log%&(𝑁)
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Proposed - Minimum Precision Criterion (MPC)

• allow for a non-zero but small probability of clipping (𝑝.) – BGC avoids clipping

• exploits reduction in /0 of 𝑦1 with 𝑁 (Central Limit Theorem)

• exhibits a trade-off between clipping noise and quantization noise
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Comparing MPC and BGC
• MPC achieves the desired 𝑆𝑄𝑁𝑅#∗

with minimum precision (𝐵# = 8)
• BGC is a huge overkill → leads to 

very large accumulator bit widths 
(𝐵# = 16 to 20)

• tBGC (truncated BGC) needs 𝐵# =
12 (still significant)

• Use MPC to assign minimum 
output (accumulator) precision
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Desired 𝑆𝑄𝑁𝑅*∗ = 38.2𝑑𝐵
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Input Precision Requirements for DNNs
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• what are the minimum values of 
𝑩𝒙𝒍 , 𝑩𝒘𝒍 , and 𝐵$" ∀ 𝑙 such that the 
network accuracy is within a Δ of 
floating-point network accuracy?
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Related Works

• much work on reduced precision machine learning since 2015 [stochastic 
rounding, BinaryNets, TernGrad, pruning…]

But……

• largely based on heuristics – relying on the benevolence of SGD
• lacking theoretical guarantees on accuracy – try and hope it works!
• difficult to realize in H/W – complex and irregular arithmetic
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Deep Learning in Finite Precision
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Sakr, Kim, Shanbhag  
ICML 2017

Sakr & Shanbhag  
ICASSP 2018

Fixed-point inference with 
theoretical guarantees

Fixed-point training with 
close-to-minimal 

precisions

Sakr & Shanbhag 

ICLR 2019

Fl.-pt. training with 
accumulation 

bit-width scaling

Sakr & Shanbhag 

(with K. Gopalakrishnan [IBM]) 

ICLR 2019

code available at https://github.com/charbel-sakr

https://github.com/charbel-sakr
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Precision Analysis Framework

• no retraining; per-layer precision; activation vs. weight trade-off
• noise gains computed via one standard backprop iteration
• minimizing 𝑝> done via noise equalization (NE)

Floating-point 
Network

Fixed-point 
Network

mismatch probability

𝑬𝑨 (activation noise gain)

𝑬𝑾 (weight noise gain)

pre-trained baseline
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Lesson 1 – Precision Trade-offs Captured Analytically

• bound predicts minimum precision within 1~2 bits
• bound reveals trade-offs between network precisions 
• trade-offs captured by relative values of noise gains

CIFAR-10 using ResNet 18

𝐵1,( = 𝐵3,( = 𝐵456
for 𝑙 = 1…𝐿𝐵1,( = log-

7!,#
7$%&

+ 𝐵456
&

𝐵3,( = log-
𝐸3,(

𝐸456
+ 𝐵456
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Lesson 2 – Precision Decreases with Depth

• weights typically require more 
precision than activations

• precision decreases because early 
perturbations are most destructive

CIFAR-10 using VGG-9
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Lesson 3 – BinaryNets are More Complex than 
Minimum Precision Networks

• up to 3.5x lower complexity & 2X lower storage over BinaryNet at iso-accuracy
• empirically observed by [Moons, Verhelst]

CIFAR-10 using VGG-9

per-layer
coarse-grained
identical

stochastic rounding 
[Gupta et al., ICML’15]

BinaryNet
[Hubara et al., NIPS’16]
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Challenges in Fixed-point Training

• multiple forward quantization noise sources
• unknown gradient dynamic range
• instability due to quantization noise bias in updates
• back-propagation of quantization noise in activation gradients
• risk of premature stoppage of convergence

25
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activations & weights
spatio-temporally 

varying distributions

gradients
spatio-temporally 

varying dynamic range

gradients & weights
huge dynamic range mismatch

[ResNet-18 on CIFAR-10]
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The Solution

• analytically guaranteed to provide 
close-to-minimal precision @ iso-
accuracy

• requires a floating-point network 
to be probed during training
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FX Training Converges with Close-to-Minimal 
Precisions

• FX training was believed to be hard due to dynamic range issues [Koester, NeurIPS’2017]
• proposed FX training is able to match FL training accuracy
• precision assignment found to be nearly minimal

28



Naresh Shanbhag – University of Illinois at Urbana-Champaign

Per-layer Precision Trends Vary

• weight precision decreases from network input to output
• precisions of activation gradients and weight accumulators increase
• ResNets have uniform precision requirements per tensor type
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Comparison w.r.t. Hyper-precision Reduction 
Techniques

• feedforward binarization (BN) and gradient ternarization (TG) fail to match FL accuracy for 
same topology

• stochastic quantization (SQ) provides marginal returns
• BN, TG, SQ do not address the fundamental problem of realizing true FX training

30
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Precision Requirements for 
In-Memory Architectures

31
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[arxiv’16, JSSC’18] [ESSCIRC’17
JSSC’18]

[ISSCC’18,
JSSC’18]

8b compute; 16kB SRAM in 65nm CMOS (UIUC)

100X EDP reduction over von Neumann equivalent* @ iso-accuracy
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multi-functional random forest on-chip learning RNN attention ntwk

[CICC‘20]

UIUC 6T SRAM Deep In-memory IC Prototypes
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[ICASSP’14]
(with Micron)

concept
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https://spectrum.ieee.org/computing/hardware/to-speed-up-ai-mix-memory-and-processing

The Deep In-memory Architecture
(DIMA)



Naresh Shanbhag – University of Illinois at Urbana-Champaign

In-memory ICs for Machine Learning is Hot!

34
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[JSSC’18]

[ESSCIRC’17]

[VLSI’16] [ISSCC’18] [ISSCC’18][ISSCC’18]

[VLSI’18] [VLSI’18]

[ISSCC’18] [VLSI’19][ISSCC’19]

[VLSI ’19] [ISSCC ’19]

[VLSI ’19]

[VLSI ’19]

[ISSCC’20]

[ISSCC’20]

[ISSCC’20]

[arxiv’19] [ISSCC’20]

[CICC’20]
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Research Questions

§ Is there a common basis for these architectures? 
§ What are their precision (compute SNR) limits? (BIG? for IMCs today) 
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bitcell array
𝐰IDA

C

ADC

𝐱I

𝑦

analog core

analog processing

𝑦J
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Fixed-Point Dot Product on IMCs
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𝒇 𝐚, 𝐛 = 𝐚-𝐛𝐰
𝐱

𝑞$

𝑦K 𝑦L = 𝑦K + 𝑞$

𝑞M$

𝑦J = 𝑦K + 𝜂J

𝜂N 𝜂O

𝒇 𝐚, 𝐛 = 𝐚-𝐛
𝑦K𝐰

𝐱

𝑆𝑁𝑅" =
1

𝑆𝑁𝑅5
+

1
𝑆𝑁𝑅6

,%
Limited by 𝑆𝑁𝑅5

𝑆𝑁𝑅5 =
7#$
%

7&'
%

(analog SNR)

𝑆𝑁𝑅6 =
7#$
%

7&'
%

(digitization SNR)



Naresh Shanbhag – University of Illinois at Urbana-Champaign

SNR Tradeoffs in Charge Summing Architectures

Limited by 
clipping 

noise

limited by 
circuit noise

§ discharge current and pulse width trades-off 
with clipping noise

§ clipping noise dominates as dimensionality N 
increases

E: analytical expression S: simulations

SNR trades off with N and 𝑉PQ

𝐵" = 6, 𝐵# = 6 SNR! =
12'"#([*#]

( *# Δ"# + '"#Δ$# 	+ 	( *# /%
4
'&#
1'#
	+ '"# /%4

'(#
2'#
	+ 	 13 ')!

#
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𝐵$ > min logR(𝑘OSTU) ,
VWX# LY Z[\.\

\

§ precision limited by SNRJ

SNRJ dB − SNR- dB ≤ 0.5 dB

Optimal 
Precisions

𝐵" = 6, 𝐵# = 6

E: analytical expression S: simulations

ADC Precision Requirements
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Summary

• Design of DNNs need not be trial-&-error based - analytical methods exist 
(for precision assignment) or can be developed

• use MPC & noise gain analysis to determine minimum precisions of DNNs

• parallel considerations for in-memory architectures – interplay between 
analog and quantization noise sources

• Next: design optimization framework? network accuracy vs. energy vs. 
latency vs….
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42

42

Complexity

Energy Latency

Accuracy Robustness
Machine Learning with 

Guarantees

Major challenge – engineered design of AI systems→
composability, interpretability, robustness, security, ethics, with guarantees
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http://shanbhag.ece.uiuc.edu

Thank You!

http://shanbhag.ece.uiuc.edu/

